

Course Syllabus

1	Course title	Principles of Food Engineering
2	Course number	0643340
2	Credit hours (theory, practical)	2, 1
3	Contact hours (theory, practical)	2, 3
4	Prerequisites/corequisites	
5	Program title	Food Science and Technology
6	Program code	042
7	Awarding institution	The University of Jordan
8	School	Agriculture
9	Department	Nutrition and Food Technology
10	Level of course	4
11	Year of study and semester (s)	Fall/Second semester
12	Final Qualification	BSc.
13	Other department (s) involved in teaching the course	None
14	Language of Instruction	English
15	Date of production/revision	9/12/2019

16. Course Coordinator: Prof. Mohammed Ismael Saleh

Office numbers, office hours, phone numbers, and email addresses should be listed.							
	Office hours						
	Day/Time	Sunday	Monday	Tuesday	Wednesday	Thursday	
	Day						
	Time	10:00 - 12:00	11:00-12:30	9:00 - 12:00	11:00-12:30		1

17. Other instructors:

Office numbers, office hours, phone numbers, and email addresses should be listed.							
		Office hours					
		Day/Time	Sunday	Monday	Tuesday	Wednesday	Thursday
		Day					
		Time	10:00 - 12:00	11:00-12:30	9:00 - 12:00	11:00-12:30	

18. Course Description:

Unit operation aspects such as material and energy balances, fluid flow theory, viscosity, heat transfer, evaporation, dehydration, freeze drying, mechanical separation, mixing, size reduction and extraction, cleaning, grading, handling and waste treatment

19. Course aims and outcomes:

A- Aims:

Learn basic principles of food engineering and apply these principles by solving food processing problems using mathematical calculations.

- B- Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to
- A. Knowledge and Understanding: Student is expected to
 - A1- Understand the concept of basic units, it uses and conversions in food science applications.
 - A2- Understand the mass and energy balance, drying principles and calculations in relation to food applications.
 - A3- Understand the concept of heat transfer in food and thermal treatments.
 - A4- Understand the concept of fluid flow, energy calculations and refrigeration system.

B. Intellectual Analytical and Cognitive Skills: Student is expected to

B1- Develop a detailed application and use basic principles of food engineering and apply these principles by solving food processing problems.

C. Subject- Specific Skills: Students is expected to

- **C1** Apply, analyze and use mathematical calculations including steam tables, psychrometric chart, drying and heat transfer and fluid flow calculations that is related to food processing problems and able to find solutions
- C2- Able to evaluate the needs/requirements for thermal processing, energy calculations and fluid flow for food applications

D. Transferable Key Skills: Students is expected to

- D1- Convey basic food engineering information and use in concepts in manufacturing organizations.
- **D2** Critically review requirements of food applications that can be used in minimize losses and conserve energy.

No. of lecture (s) /Week	Subject	Sources	ILOs
2 lectures/1 LAB (wk 1)	 Syllabus; Introduction to dimensions, units Mass/force relationships; Symbols and definitions; temperature system conversion. (LAB) 	Toledo Chapter 2, 3 Wilhelm Chapter 1	A-1, A-2, B-1
2 lectures/1 LAB (wk 2)	 Mass balances; Approach; Wet/dry basis MC, conversion. Mass balance example problems. (LAB) 	Toledo Chapter 3 Wilhelm Chapter 1	A-2, B-1
4 lectures/2 LAB (wk 3-4)	 5. Steam tables; explanation and use. 6. Thermodynamic properties; combined mass and energy balances. (LAB) 7. Introduction to psychrometrics. Demonstration of psychrometric chart. (LAB) 	Toledo Chapter 5, 12 Wilhelm Chapter 9	A-1, A-2, B1
2 lectures/1 LAB (wk 5)	 8. Combined mass and energy balance example problems. 9. Psychrometric processes; wet bulb 	Wilhelm Chapter 10	A-2, B-1

20. Topic Outline and Schedule:

Г			
	temperature definition, heating, cooling,		
	adiabatic saturation. (LAB)		
2 lectures/1	10. Equilibrium MC; definition and	Wilhelm Chapter 10	C-1, B-1, D-1
	relationships; Water activity.		
(wk 6)	11. Grain drying calculations using the		
	psychrometric chart. (LAB)		
	12. Drying; constant rate and falling rate		
	regions, thin layer drying equation.		
2 lectures/1	Exam I 13. Basic overview of heat transfer modes.	Tolodo Chanton 7	
2 lectures/1 LAB	14. Concept of resistance for calculating	Toledo Chapter 7 Wilhelm Chapter 5	A-1, A-3, B-1
(wk 7)	steady state heat flow and temperature	winnenn Chapter 5	
(WK T)	distribution in plane walls.		
	15. Steady state radial heat transfer,		
	example problem. (LAB)		
2 lectures/1	16. Radiation heat transfer.	Toledo Chapter 7	A-3, B-1
LAB	17. Transient heat transfer; lumped	Wilhelm Chapter 5,	A-0, D-1
(wk 8)	capacitance. (LAB)	6	
4 lectures/2		•	A-3, B-1
4 lectures/2 LAB	 Thermal properties of foods. Transient heat transfer; graphical 	Toledo Chapter 7 Wilhelm Chapter 6	A-3, D-1
(wk 9-10)	solutions. (LAB)	winnenn Unapter 0	
(WK 9-10)	20. Transient heat transfer; comparison of		
	measured and calculated transient		
	geometric center temperatures in an		
	apple. (LAB)		
	21. Transient heat transfer; superposition		
	principle.		
2 lectures/1	22. Heat exchanger overview and analysis.	Toledo Chapter 7, 9	A-3, B-1, C-1, C-2,
LAB	23. Thermal sterilization of foods—	Wilhelm Chapter 5,	D-1, D-2
(wk 11)	development of D_T , z and F_0 . (LAB)	7	
	24. Calculation of F_0 values.		
2 lectures/1	25. Classification of fluids and flows;	Toledo Chapter 6	A-4, C-1, C-2
LAB	Reynolds No.	Wilhelm Chapter 4	, ,
(wk 12)	26. Energy components of fluid flow.		
	Mechanical energy balance of fluid		
	flow; Bernoulli's Equation. (LAB)		
2 lectures/1	27. Explanation of pump and system	Toledo Chapter 6	A-4, C-1, C-2, D-2
LAB	characteristic curves. Pumping system	Wilhelm Chapter 4	
(wk 13)	analysis; energy requirement	_	
-	calculations.		
	28. Pump sizing example problem. (LAB)		
	29. Pipe friction.		
2 lectures/1	30. Development of viscosity; Newton's	Toledo Chapter 6	A-4, C-1, C-2
LAB	viscosity law.	Wilhelm Chapter 8	
(wk 14)	31. Non-Newtonian fluids; accounting for in		
	pumping calculations. Layout of		
	example problem using non-Newtonian		
	fluid. (LAB)		
2 lectures/1	32. Work the non-Newonian fluid example	Toledo Chapter 6,	A-1, A-4
LAB	problem presented in lab.	10 Wilhelm Chapter	
(wk 15)	33. Introduction to vapor compression	8	
	refrigeration systems.		
	34. Application of the Mollier diagram to		
	vapor compression systems. (LAB)		

2 lectures/1 LAB (wk 16)	 35. Refrigeration system calculations using the Mollier diagram. 36. Latent heat of fusion; calculation of cooling loads. 37. Respiration; calculation of cooling 	Toledo Chapter 10 Wilhelm Chapter 8	A-4, D-1, D-2
	loads. (LAB)		

21. Teaching Methods and Assignments:

Class Procedures:

- Homework assignments are due at the beginning of the class period of the day in which they are due.
- Late homework or laboratory assignments will be penalized by deducting 50% of the point value of the assignment per late day.

Laboratories:

Unit exams will normally be given during laboratory times. Additionally, many laboratory sessions will be used to illustrate problem-solving demonstrations. Finally, some laboratory sessions may be used for field trips to local food industry facilities.

22. Evaluation Methods and Course Requirements:

Problem sets will be assigned approximately once per week, graded, returned with marks, and counted toward the final grade tabulation. Exams will be administered after completion of the course technical units; these unit exams will comprise both essay and problem-oriented questions. The final exam is comprehensive.

23. Course Policies:

Students and instructors each have an important role in maintaining a classroom environment optimal for learning, and are expected to treat each other with respect during class, using thoughtful dialogue, and keeping disruptive behaviors to a minimum. Class discussions are interactive and diverse opinions will be shared; please be thoughtful in sharing your perspectives and responses with one another. Other behaviors that can be disruptive are chatting and whispering during class, the use of electronic equipment, preparing to leave before class is over, and consistently arriving late to class. Please keep these disruptions to a minimum. Inappropriate behavior in the classroom may result in a request to leave the class and/or subject to penalty.

24. Required equipment: (Facilities, Tools, Labs, Training....)

Classroom facilities

25. References:

Main Reference/s:

Toledo, R.T. 2007. Fundamentals of Food Process Engineering, 3rd Ed., 233 Spring Street, New York, NY 10013-1522.

Additional reference:

- 1. Heldman, D.R. and R.W. Hartel. 1997. Principles of Food Processing. Chapman and Hall. 115 Fifth Av., New York, NY 10003-1004.
- 2. Singh, R.P and Heldman, D.R. 2003. Introduction to Food Engineering. 3rd edition. Academic Press, San Diego California.
- 3. Wilhelm, L.R., D.A. Suter, and G.H. Brusewitz. 2004. Food & Process Engineering Technology. American Society of Ag. Engineers, 2950 Niles Rd., St. Joseph, MI 47085-9659.

26. Additional information:

Name of Course Coordinator: Prof. Mohammed Isma	ael Saleh Signature: Date:
Head of curriculum committee/Department:	Signature:
Head of Department:	Signature:
Head of curriculum committee/Faculty:	Signature:
Dean:	-Signature: